By Topic

A wavelet clustering technique for the identification of functionally connected regions in the rat brain using resting state fMRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alessio Medda ; Aerospace, Transportation and Advanced Systems Lab, Georgia Tech Research Institute, Atlanta, USA ; Lukas Hoffmann ; Martha Willis ; Matthew Magnuson
more authors

This work presents a new data-driven method for the identification of functionally connected regions in the rat brain, using agglomerative clustering based on the discrete wavelet transform (DWT). The proposed approach is evaluated on resting state fMRI data and no a priori assumptions about the distribution of the signals or anatomical ROIs are made. The coefficients of the DWT are used as features in the clustering algorithm, and the performance of the classifier is evaluated as the capability to produce clusters that best correlate with known anatomical regions in the sensorimotor cortex of the brain. Wavelet features that best represent salient characteristics in the spectrum of the voxel signals are found to produce best clustering results.

Published in:

2012 IEEE Statistical Signal Processing Workshop (SSP)

Date of Conference:

5-8 Aug. 2012