By Topic

2D face recognition based on RL-LDA learning from 3D model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Li Yuan ; Sch. of Electron. & Electr. Eng., Wuhan Textile Univ., Wuhan, China

One of the main challenges in face recognition is represented by pose and illumination variations that drastically affect the recognition performance. This paper presents a new approach for face recognition based on Regularized-Labeled Linear Discriminant Analysis (RL-LDA) learning from 3D models. In the training stage, 3D face information is exploited to generate a large number of 2D virtual images with varying pose and illumination, and these images are grouped into different labeled subsets in a supervised manner. Labeled Linear Discriminant Analysis (L-LDA) is operated on each subsets subsequently. On this basis, eigenspectrum analysis is implemented to regularize the extracted L-LDA features. Recognition is accomplished by calculating RL-LDA features, and achieved a recognition rate of 98.4% on WHU-3D-2D database.

Published in:

Uncertainty Reasoning and Knowledge Engineering (URKE), 2012 2nd International Conference on

Date of Conference:

14-15 Aug. 2012