Cart (Loading....) | Create Account
Close category search window

Efficient and Scalable Processing of String Similarity Join

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chuitian Rong ; Key Lab. of Data Eng. & Knowledge Eng., Renmin Univ. of China, Beijing, China ; Wei Lu ; Xiaoli Wang ; Xiaoyong Du
more authors

The string similarity join is a basic operation of many applications that need to find all string pairs from a collection given a similarity function and a user-specified threshold. Recently, there has been considerable interest in designing new algorithms with the assistant of an inverted index to support efficient string similarity joins. These algorithms typically adopt a two-step filter-and-refine approach in identifying similar string pairs: 1) generating candidate pairs by traversing the inverted index; and 2) verifying the candidate pairs by computing the similarity. However, these algorithms either suffer from poor filtering power (which results in high verification cost), or incur too much computational cost to guarantee the filtering power. In this paper, we propose a multiple prefix filtering method based on different global orderings such that the number of candidate pairs can be reduced significantly. We also propose a parallel extension of the algorithm that is efficient and scalable in a MapReduce framework. We conduct extensive experiments on both centralized and Hadoop systems using both real and synthetic data sets, and the results show that our proposed approach outperforms existing approaches in both efficiency and scalability.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 10 )

Date of Publication:

Oct. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.