By Topic

A Constrained Evolutionary Computation Method for Detecting Controlling Regions of Cortical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yang Tang ; Harbin Institute of Technology, Harbin and Humboldt University, Berlin and Potsdam Institute for Climate Impact Research, Potsdam ; Zidong Wang ; Huijun Gao ; Stephen Swift
more authors

Controlling regions in cortical networks, which serve as key nodes to control the dynamics of networks to a desired state, can be detected by minimizing the eigenratio R and the maximum imaginary part σ of an extended connection matrix. Until now, optimal selection of the set of controlling regions is still an open problem and this paper represents the first attempt to include two measures of controllability into one unified framework. The detection problem of controlling regions in cortical networks is converted into a constrained optimization problem (COP), where the objective function R is minimized and σ is regarded as a constraint. Then, the detection of controlling regions of a weighted and directed complex network (e.g., a cortical network of a cat), is thoroughly investigated. The controlling regions of cortical networks are successfully detected by means of an improved dynamic hybrid framework (IDyHF). Our experiments verify that the proposed IDyHF outperforms two recently developed evolutionary computation methods in constrained optimization field and some traditional methods in control theory as well as graph theory. Based on the IDyHF, the controlling regions are detected in a microscopic and macroscopic way. Our results unveil the dependence of controlling regions on the number of driver nodes I and the constraint r. The controlling regions are largely selected from the regions with a large in-degree and a small out-degree. When r = + ∞, there exists a concave shape of the mean degrees of the driver nodes, i.e., the regions with a large degree are of great importance to the control of the networks when I is small and the regions with a small degree are helpful to control the networks when I increases. When r = 0, the mean degrees of the driver nodes increase as a function of I. We find that controlling σ is becoming more important in controlling a cortical network with increasing I. The methods and results of detecting c- ntrolling regions in this paper would promote the coordination and information consensus of various kinds of real-world complex networks including transportation networks, genetic regulatory networks, and social networks, etc.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:9 ,  Issue: 6 )