By Topic

ALU Architecture with Dynamic Precision Support

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Getao Liang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; JunKyu Lee ; Peterson, G.D.

Exploiting computational precision can improve performance significantly without losing accuracy in many applications. To enable this, we propose an innovative arithmetic logic unit (ALU) architecture that supports true dynamic precision operations on the fly. The proposed architecture targets both fixed-point and floating-point ALUs, but in this paper we focus mainly on the precision-controlling mechanism and the corresponding implementations for fixed-point adders and multipliers. We implemented the architecture on Xilinx Virtex-5 XC5VLX110T FPGAs, and the results show that the area and latency overheads are 1% ~ 24% depending on the structure and configuration. This implies the overhead can be minimized if the ALU structure and configuration are chosen carefully for specific applications. As a case study, we apply this architecture to binary cascade iterative refinement (BCIR). 4X speedup is observed in this case study.

Published in:

Application Accelerators in High Performance Computing (SAAHPC), 2012 Symposium on

Date of Conference:

10-11 July 2012