By Topic

Energy-Aware Scheduling Algorithm with Duplication on Heterogeneous Computing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing Mei ; Nat. Supercomput. Center in Changsha, Hunan Univ., Changsha, China ; Kenli Li

Efficient application scheduling is critical for achieving high performance in heterogeneous computing (HC) environments. Because of its importance, there are many researches on this problem and various algorithms have been proposed. Duplication-based algorithm is a kind of famous algorithm to solve scheduling problem, which achieve high performance on minimizing the overall completion time(makespan) of applications. However, they do not consider energy consumption. With the growing advocacy for green computing system, energy conservation has been an important issue and gained a particular interest. An existing technique to reduce energy consumption of application is dynamic voltage/frequcny scaling(DVFS), but its efficiency is affected by the overhead of time and energy caused by voltage scaling. In this paper, we propose a new energy-aware scheduling algorithm called Energy Aware Scheduling by Minimizing Duplication(EAMD), which considers the energy consumption as well as the makespan of applications. It adopts a subtle energy-aware method to determine and delete the abundant task copies in the schedules generated by duplication-based algorithms, which is easier to operate than DVFS and produces no extra time and energy consumption. This algorithm can reduce large amount of energy consumption while having the same makespan compared with duplication-based algorithms without energy awareness. Randomly generated DAGs are tested in our experiments. Experimental results show that EAMD can save up to 15.59% energy consumption for the existed duplication-based algorithms. Several factors affecting the performance are analyzed in the paper, too.

Published in:

Grid Computing (GRID), 2012 ACM/IEEE 13th International Conference on

Date of Conference:

20-23 Sept. 2012