By Topic

Theoretical analysis for intermediate band and tandem hybrid solar cell materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jongwon Lee ; Arizona State Univ., Tempe, AZ, USA ; Dahal, S.N. ; Honsberg, C.B.

The efficiency limit of an intermediate band (IB) solar cell can be increased by a “tandem” configuration of multiple intermediate band devices. Thermodynamic models show that the efficiency of a two-stack tandem of IB devices achieves the efficiency of a six junction series connected solar cell. The efficiency of an IB in conjunction with a single or double stack tandem has similar efficiency advantages. Further, analysis of the materials which can be used to implement IB solar cells in a tandem configuration shows advantages relating to the ability to implement IB materials with quantum wells or quantum dots. For a single IB solar cell, a key difficulty is identifying materials for the barrier and the quantum well which have a small valence band offset and large conduction band offset (or the reverse). The use of an IB solar cell as the bottom solar cell of a tandem allows a larger range of materials with suitable barrier band gaps and a smaller ideal conduction band offset. A further theoretical advantage of such a structure is that it avoids the extremely low open circuit voltages achieved from pn junctions in low bandgap materials; for example, the thermodynamic optimum for a 6 junction tandem solar cell has its lowest bandgap below 0.4 eV. We present a thermodynamic model for IB hybrid tandem configurations which does not assume spectral selectivity among the different solar cells and predicts that a barrier/quantum dot structure can have an efficiency as high as 60 to 70 percent at 1000X blackbody radiation.

Published in:

Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE

Date of Conference:

3-8 June 2012