By Topic

Intelligent Model-Based Control of a Standalone Photovoltaic/Fuel Cell Power Plant With Supercapacitor Energy Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thounthong, P. ; Dept. of Teacher Training in Electr. Eng., King Mongkut''s Univ. of Technol. North Bangkok, Bangkok, Thailand ; Luksanasakul, A. ; Koseeyaporn, P. ; Davat, B.

A renewable energy hybrid power plant, fed by photovoltaic (PV) and fuel cell (FC) sources with a supercapacitor (SC) storage device and suitable for distributed generation applications, is proposed herein. The PV is used as the primary source; the FC acts as a backup, feeding only the insufficiency power (steady-state) from the PV; and the SC functions as an auxiliary source and a short-term storage system for supplying the deficiency power (transient and steady-state) from the PV and the FC. For high-power applications and optimization in power converters, four-phase parallel converters are implemented for the FC converter, the PV converter, and the SC converter, respectively. A mathematical model (reduced-order model) of the FC, PV, and SC converters is described for the control of the power plant. Using the intelligent fuzzy logic controller based on the flatness property for dc grid voltage regulation, we propose a simple solution to the fast response and stabilization problems in the power system. This is the key innovative contribution of this research paper. The prototype small-scale power plant implemented was composed of a PEMFC system (1.2 kW, 46 A), a PV array (0.8 kW), and an SC module (100 F, 32 V). Experimental results validate the excellent control algorithm during load cycles.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 1 )