By Topic

Maximum a Posteriori Based Approach for Target Detection in MTI Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyder, M.D. ; Dept. of Electr. Eng., Univ. of Newcastle, Callaghan, NSW, Australia ; Mahata, K.

We propose a sparse recovery approach to detect moving targets in clutter. In presence of clutter, the target space is not sparse. We propose a simple way to estimate the clutter region. We then enforce sparsity by modeling the clutter as a single extended cluster of nonzero components. This done by solving a sparse signal recovery problem with partially known support within a maximum a posteriori estimation framework. The resulting algorithm is applied in angle-Doppler imaging for moving target indication in an airborne radar. Our approach has a number of advantages including improved robustness to noise and increased resolution with limited data.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 3 )