Cart (Loading....) | Create Account
Close category search window
 

Study-Parameter Impact in Quantitative 90-Yttrium PET Imaging for Radioembolization Treatment Monitoring and Dosimetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Goedicke, A. ; Univ. Hosp., Dept. of Nucl. Med., RWTH Aachen Univ., Aachen, Germany ; Berker, Y. ; Verburg, F.A. ; Behrendt, F.F.
more authors

A small positron-generating branch in 90-Yttrium (90Y) decay enables post-therapy dose assessment in liver cancer radioembolization treatment. The aim of this study was to validate clinical 90Y positron emission tomography (PET) quantification, focusing on scanner linearity as well as acquisition and reconstruction parameter impact on scanner calibration. Data from three dedicated phantom studies (activity range: 55.2 MBq-2.1 GBq) carried out on a Philips Gemini TF 16 PET/CT scanner were analyzed after reconstruction with up to 361 parameter configurations. For activities above 200 MBq, scanner linearity could be confirmed with relative error margins <;4%. An acquisition-time-normalized calibration factor of 1.04 MBq·s/CNTS was determined for the employed scanner. Stable activity convergence was found in hot phantom regions with relative differences in summed image intensities between -3.6% and +2.4%. Absolute differences in background noise artifacts between - 79.9% and + 350% were observed. Quantitative accuracy was dominated by subset size selection in the reconstruction. Using adequate segmentation and optimized acquisition parameters, the average activity recovery error induced by the axial scanner sensitivity profile was reduced to +2.4%±3.4% (mean ± standard deviation). We conclude that post-therapy dose assessment in 90Y PET can be improved using adapted parameter setups.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.