By Topic

SPAM: A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Chin Chuang ; Res. Center for Inf. Technol. Innovation, Acad. Sinica, Taipei, Taiwan ; Jeng-Farn Lee ; Meng-Chang Chen

The Internet Engineering Task Force NETLMM Working Group recently proposed a network-based localized mobility management protocol called Proxy Mobile IPv6 (PMIPv6) to support mobility management without the participation of mobile nodes in any mobility-related signaling. Although PMIPv6 reduces the signaling overhead and the handover latency, it still suffers from packet loss problem and long authentication latency during handoff. In addition, there are many security threats to PMIPv6. In this paper, we perform a bicasting scheme for avoiding the packet loss problem, use the piggyback technique to reduce the signaling overhead, and provide a secure password authentication mechanism (SPAM) for protecting a valid user from attacks in PMIPv6 networks. SPAM provides high security properties, including anonymity, stolen-verified attack resistance, location privacy, mutual authentication, forgery attack resistance, no clock synchronization problem, modification attack resistance, replay attack resistance, fast error detection, choose and change password free, and session key agreement. Moreover, SPAM is an efficient authentication scheme that performs the authentication procedure locally and has low computational cost. From the analysis, we demonstrate that our scheme can resist various attacks and provides better performance than existing schemes.

Published in:

Systems Journal, IEEE  (Volume:7 ,  Issue: 1 )