By Topic

Alloying From Screen-Printed Aluminum Pastes Containing Boron Additives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rauer, M. ; Fraunhofer Inst. for Solar Energy Syst., Freiburg, Germany ; Schmiga, C. ; Glatthaar, M. ; Glunz, S.W.

We present a detailed study on alloying from screen-printed aluminum pastes containing boron additives (Al-B pastes) to further enhance the efficiency of p- and n-type silicon solar cells with an Al-alloyed back-surface field and rear emitter, respectively. Due to the high B solubility in Si, the additional incorporation of B atoms as acceptors into the Al-alloyed p+ region-referred to as Al-B codoping of Si-provides improved shielding of electrons from the recombination-active surface. Thus, alloying from Al-B pastes allows for significantly thinner p + regions and leads to a considerable reduction of the p + saturation current densities. By comparing surface-passivated p+ regions alloyed from Al-B pastes or conventional Al pastes with each other, we show that a highly recombination-active defect limits the minority carrier lifetime in these p+ regions. We demonstrate that the acceptor concentration profiles of the p+ regions can easily be modified by adding different amounts of aluminum diboride or boron trioxide as B sources to the Al pastes.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )