By Topic

Optimization of detector arrays and circuits targeted for precision calculation in infrared laser interferometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xiaojie Sun ; Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, 500# YuTian Road Shanghai, 200083 China

A low noise transimpedance amplifier (TIA) is used in a wide band PIN (Positive Intrinsic Negative) laser detector arrays to transform the photo current produced by an infrared interfering laser power to an output voltage with a specified amplitude and frequency response. In this paper we consider the specifications of a PIN detector array coupled with a TIA circuit. Then the following issues that influence high precision calculation results will be investigated: low noise performance of the detector array and TIA pre-amplifier; fluctuation effects of amplitude caused by frequency modulation interfering signal; photosensitive area (PA) of the detector and physical distance between detectors. We find that noise performance related with signal to noise ratio (SNR) defines the minimum calculation error. And PA related with sensitivity has influence on junction capacitance and amplitude fluctuation. Meanwhile bias circuit mode related with dark current also influence amplitude response. Based on these issues, a PIN detector array pair is constructed of five sensors arranged in cross. The center response wavelength of the detector array is around 850 nm according to the requirement of the referential laser interferometer.

Published in:

2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)

Date of Conference:

28-31 Aug. 2012