By Topic

Spatial-temporal compressed sensing based traffic prediction in cellular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qian Wen ; York-Zhejiang Lab. for Cognitive Radio & Green Commun., Zhejiang Univ., Hangzhou, China ; Zhifeng Zhao ; Rongpeng Li ; Honggang Zhang

In conventional cellular networks, base stations (B-Ss) usually suffer from severe power consumption since they are working to guarantee the coverage and QoS (quality-of-service) requirement according to the peak traffic load generated by the mobile cellular users Accordingly, how to precisely forecast the future traffic load to promote network cooperation and adaptive energy resource allocation in complying with the variation of spatial-temporal traffic load has been an emerged issue due to the significant energy exhaustion of BSs. In this paper, we propose a spatial-temporal compressed sensing based network traffic prediction method to solve this problem. We first construct a traffic matrix (TM) by using previously measured data and setting the data to be predicted as zeros, corresponding to the volume of traffic load. Then, compressed sensing approach with large scale and small scale temporal constraints as well as spatial constraints is employed to factorize the traffic matrix. By reuniting the results of traffic matrix factorization, we obtain the estimation of predicted traffic data. Numerical results have showed that this method can restrict the prediction error under 10% when dealing with real traffic load data.

Published in:

Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on

Date of Conference:

15-17 Aug. 2012