Cart (Loading....) | Create Account
Close category search window
 

Decision Making and Finite-Time Motion Control for a Group of Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiang Lu ; Coll. of Autom., Hangzhou Dianzi Univ., Hangzhou, China ; Shirong Liu ; Xiaogao Xie ; Jian Wang

This paper deals with the problem of odor source localization by designing and analyzing a decision-control system (DCS) for a group of robots. In the decision level, concentration magnitude information and wind information detected by robots are used to predict a probable position of the odor source. Specifically, the idea of particle swarm optimization is introduced to give a probable position of the odor source in terms of concentration magnitude information. Moreover, an observation model of the position of the odor source is built according to wind information, and a Kalman filter is used to estimate the position of the odor source, which is combined with the position obtained by using concentration magnitude information in order to make a decision on the position of the odor source. In the control level, two types of the finite-time motion control algorithms are designed; one is a finite-time parallel motion control algorithm, while the other is a finite-time circular motion control algorithm. Precisely, a nonlinear finite-time consensus algorithm is first proposed, and a Lyapunov approach is used to analyze the finite-time convergence of the proposed consensus algorithm. Then, on the basis of the proposed finite-time consensus algorithm, a finite-time parallel motion control algorithm, which can control the group of robots to trace the plume and move toward the probable position of odor source, is derived. Next, a finite-time circular motion control algorithm, which can enable the robot group to circle the probable position of the odor source in order to search for odor clues, is also developed. Finally, the performance capabilities of the proposed DCS are illustrated through the problem of odor source localization.

Published in:

Cybernetics, IEEE Transactions on  (Volume:43 ,  Issue: 2 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.