By Topic

Detecting Outlier Measurements Based on Graph Rigidity for Wireless Sensor Network Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zheng Yang ; Sch. of Software, Tsinghua Univ., Beijing, China ; Chenshu Wu ; Tao Chen ; Yiyang Zhao
more authors

A majority of localization approaches for wireless sensor networks rely on the measurements of internode distance. Errors are inevitable in distance measurements, and we observe that a small number of outliers can drastically degrade localization accuracy. To deal with noisy and outlier ranging results, a straightforward method, known as triangle inequality, has often been employed in previous studies. However, triangle inequality has its own limitations that make it far from accurate and reliable. In this paper, we first analyze how much information is needed to identify outlier measurements. Applying the rigidity theory, we propose the concept of verifiable edges and derive the conditions for an edge to be verifiable. On this basis, we design a localization approach with outlier detection, which explicitly eliminates ranges with large errors before location computation. Considering the entire network, we define verifiable graphs in which all edges are verifiable. If a wireless network meets the requirements of graph verifiability, it is not only localizable but outlier resistant as well. Extensive simulations are conducted to examine the effectiveness of the proposed approach. The results show remarkable improvement in location accuracy by sifting outliers.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:62 ,  Issue: 1 )