By Topic

Characterization of Piezoresistive-Si-Nanowire-Based Pressure Sensors by Dynamic Cycling Test With Extralarge Compressive Strain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A novel pressure sensor using piezoresistive silicon nanowires (SiNWs) embedded in a suspended multilayered diaphragm is investigated by a probe-based dynamic cycling test combining the standard bulge testing setup. By utilizing the high fracture stress of the SiNx film, we explored the behavior of the SiNW under a level of extralarge compressive strain for the first time, including strain levels of more than 2.1% under the static testing and 1.5% under the dynamic testing. Drift of the initial resistances of the SiNW was observed at different time intervals during the dynamic testing under a compressive strain of higher than 1.3%, while the sensitivity of the pressure sensor basically keeps unchanged. However, there was almost no drift or degradation observed in the sensor characteristics when an equivalent point loading within the application working range is applied to the pressure sensor during the dynamic testing.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 11 )