Cart (Loading....) | Create Account
Close category search window
 

Scale-Free Hyperbolic CORDIC Processor and Its Application to Waveform Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aggarwal, S. ; Dept. of Electron. & Commun. Eng., Maulana Azad Nat. Inst. of Technol., Bhopal, India ; Meher, P.K. ; Khare, K.

This paper presents a novel completely scaling-free CORDIC algorithm in rotation mode for hyperbolic trajectory. We use most-significant-1 bit detection technique for micro-rotation sequence generation to reduce the number of iterations. By storing the sinh/cosh hyperbolic values at octant boundaries in a ROM, we can extend the range of convergence to the entire coordinate space. Based on this, we propose a pipeline hyperbolic CORDIC processor to implement a direct digital synthesizer (DDS). The DDS is further used to derive an efficient arbitrary waveform generator (AWG), where a pseudo-random number generator modulates the linear increments of phase to produce random phase-modulated waveform. The proposed waveform generator requires only one DDS for generating variety of modulated waveforms, while existing designs require separate DDS units for different type of waveforms, and multiple DDS units are required to generate composite waveforms. Therefore, area complexity of existing designs gets multiplied with the number of different types waveforms they generate, while in case of proposed design that remains unchanged. The proposed AWG when mapped on Xilinx Spartan 2E device, consumes 1076 slices and 2016 4-input LUTs. The proposed AWG involves significantly less area and lower latency, with nearly the same throughput compared to the existing CORDIC-based designs.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.