By Topic

Positioning Error Reduction Technique Using Spectrum Reshaping for Distributed Fiber Interferometric Vibration Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shangran Xie ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Min Zhang ; Yanhe Li ; Yanbiao Liao

A novel positioning error reduction technique is proposed for dual Mach-Zehnder fiber interferometric distributed vibration sensor. The 3 dB bandwidth of the power spectrum of interference signal is broadened to reduce the mean square error (MSE) of the cross-correlation based positioning algorithm. A high-pass filter (HPF) whose cutoff frequency is larger than the upper frequency of signal 3 dB bandwidth is applied to reshape the original power spectrum by attenuating the magnitude of low-frequency mainlobe to the same order as that of the small high-frequency components. The usage of HPF can cause bandwidth broadening and signal to noise ratio (SNR) reduction, the influence of both effects on ultimate positioning MSE are analyzed in detail. Theoretical analysis shows that there exists a valid region for the cutoff frequency of the HPF within which the contribution of bandwidth broadening dominates the process. The technique is also experimentally verified and analyzed by field test on an installed submarine cable between two islands of Zhejiang Province, China. Field test results coincide with the theoretical predictions and show that a maximum of 7 dB reduction of positioning MSE can be achieved when optimal cutoff frequency of HPF is used.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 22 )