Cart (Loading....) | Create Account
Close category search window

Formation and cell translocation of carbon nanotube-fibrinogen protein corona

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chen, Ran ; Nano-Biophysics and Soft Matter Laboratory, COMSET, Clemson University, Clemson, South Carolina 29634, USA ; Radic, Slaven ; Choudhary, Poonam ; Ledwell, Kimberley G.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The binding of plasma fibrinogen with both single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs) has been examined. Specifically, our absorbance study indicated that MWNTs were coated with multi-layers of fibrinogen to render a “hard protein corona,” while SWNTs were adsorbed with thin layers of the protein to precipitate out of the aqueous phase. In addition, static quenching as a result of energy transfer from fluorescently labeled fibrinogen to their nanotube substrates was revealed by Stern-Volmer analysis. When exposed to HT-29 cells, the nanotubes and fibrinogen could readily dissociate, possibly stemming from their differential affinities for the amphiphilic membrane bilayer.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 13 )

Date of Publication:

Sep 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.