By Topic

Power-efficient decoder implementation based on state transparent convolutional codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shiau, Y.-H. ; Dept. of Electr. Eng., Nat. Yunlin Univ. of Sci. & Technol., Douliu, Taiwan ; Yang, H.-Y. ; Chen, P.-Y. ; Huang, S.-G.

In this study, a power-efficient very large-scale integration (VLSI) implementation for the convolutional code decoder is presented. Based on the state transparent convolutional code definition, the receiving codewords are classified into non-erroneous and erroneous segments separately. Different from the conventional Viterbi decoder (VD), the authors use a low-complexity decoder, denoted as bit reverse decoder, to recover the non-erroneous segments using reverse operation with a little power consumption and present the segment-based VD to decode the erroneous codeword segments. Then, the clock-gating technique is employed to switch between segment-based VD and bit reverse decoder for power saving. To further reduce the power consumption, the authors group registers into several segments in the survivor memory unit of the segment-based VD and also apply clock gating to each segment individually. According to the number of consecutive erroneous codeword segments, the corresponding numbers of register segments in the survivor memory unit are enabled and other register segments are clock-gated to reduce the switching activities. Besides, our design determines the start and terminal states of the survivor path to obtain correct results of erroneous segments without bit-error rate degradation. As compared with other decoders, our design requires less power without decreasing the decoding performance.

Published in:

Circuits, Devices & Systems, IET  (Volume:6 ,  Issue: 4 )