By Topic

Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Coupé, P. ; McConnell Brain Imaging Centre, McGill Univ., Montréal, QC, Canada ; Manjón, J.V. ; Robles, M. ; Collins, D.L.

In this study, an adaptive multiresolution version of the blockwise non-local (NL)-means filter is presented for three-dimensional (3D) magnetic resonance (MR) images. On the basis of an adaptive soft wavelet coefficient mixing, the proposed filter implicitly adapts the amount of denoising according to the spatial and frequency information contained in the image. Two versions of the filter are described for Gaussian and Rician noise. Quantitative validation was carried out on BrainWeb datasets by using several quality metrics. The results show that the proposed multiresolution filter obtained competitive performance compared with recently proposed Rician NL-means filters. Finally, qualitative experiments on anatomical and diffusion-weighted MR images show that the proposed filter efficiently removes noise while preserving fine structures in classical and very noisy cases. The impact of the proposed denoising method on fibre tracking is also presented on a HARDI dataset.

Published in:

Image Processing, IET  (Volume:6 ,  Issue: 5 )