Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

SDP-based extremum seeking energy management strategy for a power-split hybrid electric vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Wang ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Zongxuan Sun

The pursuit of high fuel efficiency and low emissions has inspired a lot of research efforts on automotive powertrain hybridization. Targeted at developing a real-time hybrid energy management strategy, a stochastic dynamic programming - extremum seeking (SDP-ES) optimization algorithm with both the system states and output feedback is investigated in this paper. This SDP-ES algorithm utilizes a state-feedback control, which is offline generated by the stochastic dynamic programming (SDP), as a reference term to ensure the approximate global energy optimality and battery state-of-charge (SOC) sustainability. And in real-time, this algorithm injects a “local” feedback term via extremum seeking (ES), which is a non-model-based nonlinear optimization method, to compensate the control commands from the SDP and generate more fuel-efficient operation points along the specific SOC sustaining line, by leveraging the real-time measurement of system outputs (fuel consumption and emissions). The simulation results show the SDP-ES algorithm can provide desirable improvement of fuel economy based on the original SDP.

Published in:

American Control Conference (ACC), 2012

Date of Conference:

27-29 June 2012