Cart (Loading....) | Create Account
Close category search window
 

Impact of wind farm placement on inter-area oscillations in large power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gayme, D.F. ; Dept. of Mech. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Chakrabortty, A.

This paper presents an analytical method for evaluating how the placement of wind farms in a large, geographically dispersed power system may affect its inter-area oscillation dynamics. We consider a continuum representation of the electro-mechanical swing dynamics for the power system leading to a linear hyperbolic wave equation for the rotor phase angle across the transfer path. The wind power is modeled as the output of a dynamic system entering the wave equation as a point source in space located at a certain electrical distance from one end of the path. We then derive the spectrum of the line power flow for this forced system using a Fourier analysis, and show how its frequency response, especially for the inter-area or low-frequency modes, is parameterized by this distance variable. We finally pose this parametric dependence as a planning problem in light of finding the optimal distance for placing the wind farm such that a specified set of inter-area modes are damped. We illustrate our results using simulations based on a two-area power system model inspired by US west coast transfer paths such as the Pacific AC Inter-tie.

Published in:

American Control Conference (ACC), 2012

Date of Conference:

27-29 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.