Cart (Loading....) | Create Account
Close category search window

Thermal models characterization for reliable temperature capping and performance optimization in Multiprocessor Systems on Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tilli, A. ; Dept. of Electron., Comput. Eng. & Syst. (DEIS), Univ. of Bologna, Bologna, Italy ; Garone, E. ; Cacciari, M. ; Bartolini, A.

Modern Multiprocessor Systems-on-Chip (MP-SoC) offer high computing performance at the expense of huge power densities unevenly distributed on the chip. This generates hot spots that may cause performance and reliability degradations as well as power consumption increases. In recent years several thermal control strategies have been developed to avoid the occurrences of these hot spots. In particular, schemes based on Model Predictive Control (MPC) theory represent the actual state-of-the-art due to their capability to explicitly deal with constraints. In this paper we discuss some important properties for the design of predictive controllers with constraints for the class of thermal system. Starting from the general partial differential equation representing the heat diffusion in a solid, the feasibility and a useful property for the reduction of the number of constraints are proven. Moreover, exploiting theoretical results, a two layers control architecture is presented, which is capable of ensuring feasibility in every circumstance. Simulative results show the benefits of this approach.

Published in:

American Control Conference (ACC), 2012

Date of Conference:

27-29 June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.