By Topic

Approximating the Riccati Equation solution for optimal estimation in large-scale Adaptive Optics systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Massioni, P. ; Univ. Paris 13, Villetaneuse, France ; Kulcsar, C. ; Raynaud, H.-F. ; Conan, J.-M.

Adaptive Optics (AO) is a technique that allows the compensation of the atmospheric turbulence effects on ground-based telescopes by means of an actively controlled deformable mirror (DMs), fed back based on the measurements obtained with one or more wavefront sensors (WFSs). For extremely large telescope (more than 20 m in diameter) the number of input and output channels can be in the range of the thousands or tens of thousands, making it problematic to apply optimal control solutions due to the heavy computational load. In this paper we show how it is possible to obtain a quick approximation of the solution of the Discrete Algebraic Riccati Equation (DARE) associated to a certain class of AO optimal control problems, and how the performance are affected by the use of such approximations.

Published in:

American Control Conference (ACC), 2012

Date of Conference:

27-29 June 2012