By Topic

Payoff-based Inhomogeneous Partially Irrational Play for potential game theoretic cooperative control: Convergence analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper investigates learning algorithm design in potential game theoretic cooperative control, where it is in general required for agents' collective action to converge to the most efficient equilibria while standard game theory aims at just computing a Nash equilibrium. In particular, the equilibria maximizing the potential function should be selected in case the utility functions are already aligned to a global objective function. In order to meet the requirement, this paper develops a learning algorithm called Payoff-based Inhomogeneous Partially Irrational Play (PIPIP). The main feature of PIPIP is to allow agents to make irrational decisions with a specified probability, i.e. agents can choose an action with a low utility from the past actions stored in the memory. We then prove convergence in probability of the collective action to the potential function maximizers. Finally, the effectiveness of the present algorithm is demonstrated through simulation on a sensor coverage problem.

Published in:

American Control Conference (ACC), 2012

Date of Conference:

27-29 June 2012