Cart (Loading....) | Create Account
Close category search window

Design and analysis of Prioritized Medium Access Control protocol for backbone routers in wireless mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Pan, Lei ; Qualcomm Inc., 1700 Technology Dr., San Jose, CA 95110, USA ; Wu, Hongyi

A Prioritized Medium Access Control (P-MAC) protocol is proposed for wireless routers of mesh networks with quality-of-service provisioning. The simple yet effective design of P-MAC offers strict service differentiation for prioritized packets. A Markov model is developed to yield important performance matrices including the packet blocking probability due to queue overflow and the packet reneging probability due to delay bound. It is further proved that the service time of P-MAC approximates exponential distribution, and can be effectively estimated. The analytic models with preemptive and non-preemptive schemes, validated via simulations, show that P-MAC can effectively support traffic differentiation and achieve very low packet dropping (both reneging and blocking) probabilities when the traffic load is below the channel capacity. When the network is overloaded, P-MAC can still maintain extremely stable and high channel throughput. Moreover, it is demonstrated that P-MAC performs superior in multihop networks, further proving the advantages of the proposed protocol.

Published in:

Tsinghua Science and Technology  (Volume:17 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.