Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Allouis, T. ; Irstea, Montpellier, France ; Durrieu, S. ; Vega, C. ; Couteron, P.

The diameter at breast height (DBH) is the most extensively measured parameter in the field for estimating stem volume and aboveground biomass of individual trees. However, DBH can not be measured from airborne or spaceborne light detection and ranging (LiDAR) data. Consequently, volume and biomass must be estimated from LiDAR data using other tree metrics. The objective of this paper is to examine whether full-waveform (FW) LiDAR data can improve volume and biomass estimation of individual pine trees, when compared to usual discrete-return LiDAR data. Sets of metrics are derived from canopy height model (CHM-only metrics), from the vertical distribution of discrete-returns (CHM+DR metrics), and from full-waveform LiDAR data (CHM+FW metrics). In each set, the most relevant and non-collinear metrics were selected using a combination of methods using best subset and variance inflation factor, in order to produce predictive models of volume and biomass. CHM-only metrics (tree height and tree bounding volume [tree height x crown area] provided volume and biomass estimates of individual trees with an error (mean error ± standard deviation) of 2% ± 26% and -15% ±49%, which is equivalent to previous studies. CHM+FW metrics did not improve stem volume estimates (5% ± 31%), but they increased the accuracy of aboveground biomass estimates ( -4%±31%). The approach is limited by the delineation of individual trees. However, the results highlight the potential of full-waveform LiDAR data to improve aboveground biomass estimates through a better integration of branch and leaf biomass than with discrete-return LiDAR data.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 2 )