By Topic

A Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Thomas Feix ; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, USA ; Javier Romero ; Carl Henrik Ek ; Heinz-Bodo Schmiedmayer
more authors

We propose a metric for comparing the anthropomorphic motion capability of robotic and prosthetic hands. The metric is based on the evaluation of how many different postures or configurations a hand can perform by studying the reachable set of fingertip poses. To define a benchmark for comparison, we first generate data with human subjects based on an extensive grasp taxonomy. We then develop a methodology for comparison using generative, nonlinear dimensionality reduction techniques. We assess the performance of different hands with respect to the human hand and with respect to each other. The method can be used to compare other types of kinematic structures.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 1 )