By Topic

Sparse Optimal Motor Estimation (SOME) for Extracting Commands for Prosthetic Limbs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yao Li ; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA ; Lauren H. Smith ; Levi J. Hargrove ; Douglas J. Weber
more authors

It is possible to replace amputated limbs with mechatronic prostheses, but their operation requires the user's intentions to be detected and converted into control signals to the actuators. Fortunately, the motoneurons (MNs) that controlled the amputated muscles remain intact and capable of generating electrical signals, but these signals are difficult to record. Even the latest microelectrode array technologies and targeted motor reinnervation can provide only sparse sampling of the hundreds of motor units that comprise the motor pool for each muscle. Simple rectification and integration of such records is likely to produce noisy and delayed estimates of the actual intentions of the user. We have developed a novel algorithm for optimal estimation of motor pool excitation based on the recruitment and firing rates of a small number (2-10) of discriminated motor units. We first derived the motor estimation algorithm from normal patterns of modulated MN activity based on a previously published model of individual MN recruitment and asynchronous frequency modulation. The algorithm was then validated on a target motor reinnervation subject using intramuscular fine-wire recordings to obtain single motor units.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:21 ,  Issue: 1 )