By Topic

Decentralized Asynchronous Learning in Cellular Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luitel, B. ; Holcombe Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Venayagamoorthy, G.K.

Cellular neural networks (CNNs), as previously described, consist of identical units called cells that are connected to their adjacent neighbors. These cells interact with each other in order to fulfill a common goal. The current methods involved in learning of CNNs are usually centralized (cells are trained in one location) and synchronous (all cells are trained simultaneously either sequentially or in parallel depending on the available hardware/software platform). In this paper, a generic architecture of CNNs is presented and a special case of supervised learning is demonstrated explaining the internal components of a cell. A decentralized asynchronous learning (DAL) framework for CNNs is developed in which each cell of the CNN learns in a spatially and temporally distributed environment. An application of DAL framework is demonstrated by developing a CNN-based wide-area monitoring system for power systems. The results obtained are compared against equivalent traditional methods and shown to be better in terms of accuracy and speed.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 11 )