By Topic

Toward an EEG-Based Recognition of Music Liking Using Time-Frequency Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hadjidimitriou, S.K. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Hadjileontiadis, L.J.

Affective phenomena, as reflected through brain activity, could constitute an effective index for the detection of music preference. In this vein, this paper focuses on the discrimination between subjects' electroencephalogram (EEG) responses to self-assessed liked or disliked music, acquired during an experimental procedure, by evaluating different feature extraction approaches and classifiers to this end. Feature extraction is based on time-frequency (TF) analysis by implementing three TF techniques, i.e., spectrogram, Zhao-Atlas-Marks distribution and Hilbert-Huang spectrum (HHS). Feature estimation also accounts for physiological parameters that relate to EEG frequency bands, reference states, time intervals, and hemispheric asymmetries. Classification is performed by employing four classifiers, i.e., support vector machines, k-nearest neighbors (k-NN), quadratic and Mahalanobis distance-based discriminant analyses. According to the experimental results across nine subjects, best classification accuracy {86.52 (±0.76)%} was achieved using k-NN and HHS-based feature vectors ( FVs) representing a bilateral average activity, referred to a resting period, in β (13-30 Hz) and γ (30-49 Hz) bands. Activity in these bands may point to a connection between music preference and emotional arousal phenomena. Furthermore, HHS-based FVs were found to be robust against noise corruption. The outcomes of this study provide early evidence and pave the way for the development of a generalized brain computer interface for music preference recognition.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 12 )