By Topic

A Novel pH Sensor of Extended-Gate Field-Effect Transistors With Laser-Irradiated Carbon-Nanotube Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yun-Shan Chien ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wan-Lin Tsai ; I-Che Lee ; Jung-Chuan Chou
more authors

The extended-gate field-effect transistors (EGFETs) with only the carbon-nanotube (CNT) thin film as both the sensing membrane and the contact electrode have been demonstrated for the first time to exhibit superior pH sensing characteristics. The continuous-wave laser was necessary to improve the pH sensitivity to be 50.9 mV/pH and the linearity values to be 0.9978 for pH = 3 to pH = 13 wide sensing range, respectively. It implied that the laser energy would unzip the chemically modified multiwalled CNTs (MWCNTs) into numerous graphite slices, resulting in the elevated sensing sites and the improved electrical and sensing properties. Therefore, the laser-irradiated MWCNT network is promising for the applications in the flexible and transparent pH-EGFETs.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 11 )