By Topic

Fault missing rate analysis of the arithmetic residue codes based fault-tolerant FIR filter design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhen Gao ; Res. Inst. of Inf. Technol., Tsinghua Univ., Beijing, China ; Wenhui Yang ; Xiang Chen ; Ming Zhao
more authors

Relative to the Triple Modular Redundancy (TMR) scheme, the arithmetic residue codes based fault-tolerant DSP design consumes much less resources. However, the price for the low resource consumption is the fault missing problem. The basic tradeoff is that, smaller modulus used for the fault checking consumes fewer resources, but the fault missing rate is higher. The relationship between the value of modulus and the fault missing rate is analyzed theoretically in this paper for fault-tolerant FIR filter design, and the results are verified by FPGA implemented fault injections.

Published in:

On-Line Testing Symposium (IOLTS), 2012 IEEE 18th International

Date of Conference:

27-29 June 2012