By Topic

An online rule weighting method to classify data streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Homeira Shahparast ; Dept. of Comput. Sci., Eng. & IT, Shiraz Univ., Shiraz, Iran ; Mohammad Taheri ; Sam Hamzeloo ; Mansoor Zolghadri Jahromi

Evolving fuzzy rule-based structures represent extremely powerful methods for online classification of data streams. The fuzzy rules are generated, modified and removed automatically in these systems. One of the simplest but efficient algorithms of this type is evolving classifier (eClass) that constructs the rules without any prior knowledge, starting “from scratch”. However, this algorithm cannot cope properly with drift and shift in the concept of data. In this paper, we propose a new efficient online method to increase the performance of this algorithm by setting a suitable weight for each rule and handle the drift and shift in the concept of data. By adjusting proper weights, the zone of influence of each rule can be easily controlled and changed regarding the restyling of the environment. Our weight adjusting algorithm is based on an efficient batch mode weight adjusting method that is developed to be consistent with characteristics of data streams. The proposed algorithm is evaluated on some standard data sets of UCI Repository and some real world data streams, and compared with the eClass algorithm. The results show that the proposed algorithm outperforms the eClass approach, and has significant improvement in most cases.

Published in:

Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on

Date of Conference:

2-3 May 2012