By Topic

Non-parametrick Synthesis of Private Probablistic Predictions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Giang, P.H. ; Dept. of Health Adm. & Policy, George Mason Univ., Fairfax, VA, USA

This paper describes a new non-parameteric method to synthesize probabilistic predictions form different experts. In contrast to the popular linear pooling method that combines forecasts with the weights that reflect the average performance of individual experts over the entire forecast space, our method exploits the information that is local to each prediction case. A simulation study, replicated from [1], shows that our synthesized forecast is calibrated and whose Brier score is close to the theoretically optimal Brier score. Our robust non-parametric algorithm delivers an excellent performance comparable to the best combination method with parametric recalibration - Ranjan-Gneiting's beta-transformed linear pooling.

Published in:

Data Engineering Workshops (ICDEW), 2012 IEEE 28th International Conference on

Date of Conference:

1-5 April 2012