Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Inverse Rendering of Faces with a 3D Morphable Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aldrian, O. ; Dept. of Comput. Sci., Univ. of York, York, UK ; Smith, W.A.P.

In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 5 )
Biometrics Compendium, IEEE