By Topic

Local Evidence Aggregation for Regression-Based Facial Point Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Brais Martinez ; Imperial College London, London ; Michel F. Valstar ; Xavier Binefa ; Maja Pantic

We propose a new algorithm to detect facial points in frontal and near-frontal face images. It combines a regression-based approach with a probabilistic graphical model-based face shape model that restricts the search to anthropomorphically consistent regions. While most regression-based approaches perform a sequential approximation of the target location, our algorithm detects the target location by aggregating the estimates obtained from stochastically selected local appearance information into a single robust prediction. The underlying assumption is that by aggregating the different estimates, their errors will cancel out as long as the regressor inputs are uncorrelated. Once this new perspective is adopted, the problem is reformulated as how to optimally select the test locations over which the regressors are evaluated. We propose to extend the regression-based model to provide a quality measure of each prediction, and use the shape model to restrict and correct the sampling region. Our approach combines the low computational cost typical of regression-based approaches with the robustness of exhaustive-search approaches. The proposed algorithm was tested on over 7,500 images from five databases. Results showed significant improvement over the current state of the art.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 5 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal