By Topic

Contactless finger knuckle identification using smartphones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
KamYuen Cheng ; Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong ; Ajay Kumar

This paper details the development of a smartphone based online system to automatically identify a person by using their finger knuckle image. The key objective is to exploit user-friendly biometric, with least privacy concern, to enhance security of the data in smartphone. The final product from this research is a finger knuckle authentication smartphone application, which is developed under Android operating system with environment version 2.3.3. This paper has developed some specialized algorithms for the finger knuckle detection, image pre-processing and region segmentation. Automatically detected and segmented finger knuckle images are used to encode finger knuckle pattern phase information using a pair of log-Gabor filters. Efficient implementation of various modules is achieved in C/C++ programming language, with OpenCV library, for online application. We also developed a user-friendly graphical user interface for the users to enroll and authenticate themselves. The developed system can therefore acquire finger knuckle image from the smartphone camera and automatically authenticate the genuine users. This paper has also developed a new smartphone based finger knuckle image database of 561 finger knuckle images of 187 different fingers from 109 users, in real imaging environment. In the best of our knowledge, this is the first attempt to develop a mobile phone based finger knuckle identification which has shown highly promising results in automatically identifying the users from their finger knuckle images.

Published in:

Biometrics Special Interest Group (BIOSIG), 2012 BIOSIG - Proceedings of the International Conference of the

Date of Conference:

6-7 Sept. 2012