Cart (Loading....) | Create Account
Close category search window
 

An associative hierarchical self-organizing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Davis, B.R. ; Sch. of Public Health, Texas Univ., Houston, TX, USA

A system that learns to predict events in various environments is described. The system is associative and distributed; a hierarchical self-organization of low-level units into high-level units takes place based on experience in a particular domain. Its design is inspired by widely held principles of brain organization and by some newly developed techniques in nonparametric statistical inference. The system can be regarded as a realization of a nonparametric statistical algorithm. This is demonstrated by a discussion of system architecture and a presentation of an application in a `number theory' environment.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:SMC-15 ,  Issue: 4 )

Date of Publication:

July-Aug. 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.