Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

State and parameter estimation of linear stochastic multivariable sampled data systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
El-Sherief, H.E. ; Exxon Production Res. Co., Houston, TX, USA

The problem of combined parameter and state estimation was originally posed as a nonlinear filtering problem using the extended Kalman filter. This led to problems of divergence and excessive computation, especially for multivariable systems. A two-stage online parameter and state estimator for multivariable stochastic systems is proposed that avoids these difficulties. A special canonical form of the state-space equations that simplifies the parameter estimation problem is used. In the first stage the parameters of the system matrices and of the steady-state Kalman filter matrix are estimated by a normalized stochastic approximation algorithm assuming known states. These parameter estimates are then utilized for state estimation in the second stage using the linear Kalman filter. The two stages are then coupled in a bootstrap manner.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:SMC-14 ,  Issue: 6 )