By Topic

Neuronlike adaptive elements that can solve difficult learning control problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barto, A.G. ; Dept. of Computer & Information Sci., Univ. of Massachusetts, Amherst, MA, USA ; Sutton, R.S. ; Anderson, C.W.

It is shown how a system consisting of two neuronlike adaptive elements can solve a difficult learning control problem. The task is to balance a pole that is hinged to a movable cart by applying forces to the cart's base. It is argued that the learning problems faced by adaptive elements that are components of adaptive networks are at least as difficult as this version of the pole-balancing problem. The learning system consists of a single associative search element (ASE) and a single adaptive critic element (ACE). In the course of learning to balance the pole, the ASE constructs associations between input and output by searching under the influence of reinforcement feedback, and the ACE constructs a more informative evaluation function than reinforcement feedback alone can provide. The differences between this approach and other attempts to solve problems using neurolike elements are discussed, as is the relation of this work to classical and instrumental conditioning in animal learning studies and its possible implications for research in the neurosciences.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:SMC-13 ,  Issue: 5 )