By Topic

Bayes' error probability for noisy and imprecise measurement in pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chaudhuri, B.B. ; Dept. of Pure and Applied Phys., Queen's Univ. of Belfast, Belfast, UK ; Murthy, C.A. ; Duttamajumder, D.

The problem of statistical pattern recognition with noisy or imprecise feature measurements is considered. An exact analytical expression is found for the probability of misclassification under this condition, for multiclass multivariate systems. The probability of error exceeds that of the ideal case for the special case of two classes, the a priori conditional probability density functions are assumed to be normal, along with the two cases of feature measurement error, namely normal and uniform probability density functions. Monotonicity of the misclassification probability with measurement error variance is shown. Numerical results are presented for both cases over a workable range of parameters. The study is useful in practical pattern recognition problems.

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:SMC-13 ,  Issue: 1 )