Cart (Loading....) | Create Account
Close category search window

Iterative solution of large, sparse linear systems on a static data flow architecture: Performance studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reed, D.A. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA ; Patrick, M.L.

The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PEs, and pipelining, the streaming of data from array memories through the PEs. The performance model is used to analyze a row-partitioned iterative algorithms for solving sparse linear systems of algebraic equations. On the basis of this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.

Published in:

Computers, IEEE Transactions on  (Volume:C-34 ,  Issue: 10 )

Date of Publication:

Oct. 1985

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.