By Topic

A unified lower bound estimation technique for high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seong Yong Ohm ; Dept. of Comput. Sci., Seoul Women''s Univ., Seoul, South Korea ; Kurdahi, F.J. ; Dutt, N.D.

The importance of effective lower bound estimation (LBE) techniques is well established in high-level synthesis (HLS) since it allows more efficient exploration of the design space while providing other HLS tools with the capability of predicting the effect of specific tools on the design space. Much of the previous work has focused on LBE techniques that use very simple cost models which primarily focus on the functional unit resources. With the push toward submicron technologies, simple models that use functional unit resources alone are not accurate enough to allow effective design space exploration since the effects of storage and interconnect can indeed dominate the cost function. In this paper, we present an integrated approach aimed at predicting lower bounds on hardware resources needed to implement a behavioral description within a given amount of time. Our area cost model accounts for storage (register) and interconnect resources (buses) in addition to functional resources. Our timing model uses a finer granularity that permits the modeling of functional unit, register, and interconnect delays. Our approach is integrated because we consider the dependencies between the different types of resources as well as the ordering in which the resources are allocated. We tested our technique for functional unit, storage, and interconnect requirements on several high-level synthesis benchmarks, and observed near-optimal results. We believe that our comprehensive LBE approach can lead to better quality HLS solutions in less time, and we demonstrate this approach in our paper

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 5 )