By Topic

Modeling Ice Shedding Propagation on Transmission Lines with or without Interphase Spacers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kollar, L.E. ; Dept. of Atmos. Icing of Power Network Equip. & Dept. of Atmos. Icing Eng. of Power Networks, Univ. of Quebec at Chicoutimi, Chicoutimi, QC, Canada ; Farzaneh, M. ; Van Dyke, P.

Ice shedding propagation on a single conductor and on a circuit of three conductors in a vertical configuration where conductors are linked with interphase spacers was modeled numerically. Several concentrated loads acting along the loaded span modeled the ice, and the shedding propagation was then simulated through the removal in a defined sequence of these concentrated loads. The model determines conductor displacement and the variation of conductor tension during the vibration following ice shedding propagation; and, thus, it predicts conductor rebound height, tension peak, and to what extent the conductor clearance is reduced during vibration. Ice shedding propagation on the full-scale test line of Hydro-Quebec was considered, and the model was validated by comparing simulation results to former experimental observations. The results show that the application of spacers reduces the severity of vibration considerably, and consequently increases the conductor clearance and reduces the risk of flashover. The dynamic effects of different shedding processes were also compared. The rebound height is the greatest for a single conductor when ice detachment propagates along the conductor, but then ice falls suddenly as a big chunk. However, the consequences of sudden detachment and shedding are obtained as the most severe when conductors are linked with spacers.

Published in:

Power Delivery, IEEE Transactions on  (Volume:28 ,  Issue: 1 )