By Topic

Illumination-robust face recognition system based on differential components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang-Heon Lee ; Div. of IT Convergence, Daegu Gyeongbuk Inst. of Sci. & Technol., Daegu, South Korea ; Dong-Ju Kim ; Jin-Ho Cho

Illumination variation generally causes performance degradation of face recognition systems under real-life environments. Therefore, we propose an illumination-robust face recognition system using a fusion approach based on efficient facial feature called differential two-dimensional principal component analysis (D2D-PCA) for consumer applications. In the proposed method, face images are divided into two sub-images to minimize illumination effects, and D2D-PCA is separately applied to each sub-images. The individual matching scores obtained from two sub-images are then integrated using a weighted-summation operation, and the fused-score is utilized to classify the unknown user. Performance evaluation of the proposed system was performed using an extended Yale face database B which consists of 2,414 face images for 38 subjects representing 64 illumination conditions under the frontal pose. Experimental results show that the proposed fusion approach enhanced recognition accuracy by 22.02% compared to that of 2DPCA, and we confirmed the effectiveness of the proposed face recognition system under illumination-variant environments.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 3 )