Cart (Loading....) | Create Account
Close category search window
 

Localized Geographic Routing to a Mobile Sink with Guaranteed Delivery in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xu Li ; Parc Sci. de la Haute Borne, INRIA Lille - Nord Eur., Villeneuve d''Ascq, France ; Jiulin Yang ; Nayak, A. ; Stojmenovic, I.

We propose a novel localized Integrated Location Service and Routing (ILSR) scheme, based on the geographic routing protocol GFG, for data communications from sensors to a mobile sink in wireless sensor networks. The objective is to enable each sensor to maintain a slow-varying routing next hop to the sink rather than the precise knowledge of quick-varying sink position. In ILSR, sink updates location to neighboring sensors after or before a link breaks and whenever a link creation is observed. Location update relies on flooding, restricted within necessary area, where sensors experience (next hop) change in GFG routing to the sink. Dedicated location update message is additionally routed to selected nodes for prevention of routing failure. Considering both unpredictable and predictable (controllable) sink mobility, we present two versions. We prove that both of them guarantee delivery in a connected network modeled as unit disk graph. ILSR is the first localized protocol that has this property. We further propose to reduce message cost, without jeopardizing this property, by dynamically controlling the level of location update. A few add-on techniques are as well suggested to enhance the algorithm performance. We compare ILSR with an existing competing algorithm through simulation. It is observed that ILSR generates routes close to shortest paths at dramatically lower (90% lower) message cost.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 9 )

Date of Publication:

October 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.