By Topic

Cooperative Secret Key Generation from Phase Estimation in Narrowband Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qian Wang ; State Key Lab. of Software Eng., Wuhan Univ., Wuhan, China ; Kaihe Xu ; Kui Ren

By exploiting multipath fading channels as a source of common randomness, physical layer (PHY) based key generation protocols allow two terminals with correlated observations to generate secret keys with information-theoretical security. The state of the art, however, still suffers from major limitations,e.g., low key generation rate, lower entropy of key bits and a high reliance on node mobility. In this paper, a novel cooperative key generation protocol is developed to facilitate high-rate key generation in narrowband fading channels, where two keying nodes extract the phase randomness of the fading channel with the aid of relay node(s). For the first time, we explicitly consider the effect of estimation methods on the extraction of secret key bits from the underlying fading channels and focus on a popular statistical method - maximum likelihood estimation (MLE). The performance of the cooperative key generation scheme is extensively evaluated theoretically. We successfully establish both a theoretical upper bound on the maximum secret key rate from mutual information of correlated random sources and a more practical upper bound from Cramer-Rao bound (CRB) in estimation theory. Numerical examples and simulation studies are also presented to demonstrate the performance of the cooperative key generation system. The results show that the key rate can be improved by a couple of orders of magnitude compared to the existing approaches.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 9 )